Fraunhofer Institute for Industrial Mathematics ITWM Hall 7 / M15

Exhibitor Profile

Das Fraunhofer ITWM besitzt langjährige Erfahrung in der Modellierung und Simulation von Filtrations- und Separationsprozessen.

Das Anwendungsspektrum der Simulationstools und -dienstleistungen umfasst die Optimierung von Filtermedien und -elementen bzgl. Effizienz und Standzeit. Durch das Einbeziehen von Herstellung und Verarbeitung von Filtermedien (z. B. Meltblown-Prozess, Plissieren) kann die gesamte Prozesskette von der Faser bis zum Filter rechnergestützt optimiert werden.

Die Simulationstechnologie deckt ein breites Themenspektrum ab, u. a. die Verformung von Filtermedien beim Betrieb, Elektretmedien für Schutzmasken, die Standzeit von Kühlmittelfiltern für die Elektromobilität, die Filtration von nichtnewtonschen Flüssigkeiten und reaktive Strömungen in porösen Medien.

Fraunhofer ITWM has years of experience in the modelling and simulation of filtration and separation processes.

The software solutions and simulation services include the optimization of filter media and elements in terms of efficiency and lifetime. By including media manufacturing and processing (e. g. meltblown process, pleating), a computer-aided optimization for the entire chain from fiber to filter is available.

The simulation techniques cover a wide range of topics such as the flow-induced deformation of filter media, electret media for protection masks, the lifetime of coolant filters for electric vehicles, filtration for non-Newtonian fluids and reactive flows in porous media.

Products / Markets

Product Index

  • Absorptionsfilter
  • Automobilfilter
  • Filterelemente
  • Filtergehäuse
  • Filtermedien
  • Filterpatronen
  • Kraftstoff-Filter
  • Luftfilter
  • Medizinische Filter
  • Membranen
  • Simulation
  • Synthetische Fasern
  • Technische Textilien
  • Ultrafiltration
  • Umkehrosmose
  • Vliesmaterialien
  • Wasserfilter
  • Ölfilter

Market Scope

  • Abwasserwirtschaft
  • Automobilindustrie
  • Chemische Industrie
  • Farben-, Pigment-, Beschichtungsindustrie
  • Filtrations- und Separationsindustrie
  • Kunststoffverarbeitende Industrie
  • Lebensmittel-,Getränkeindustrie
  • Pharmazeutische Industrie
  • Textilindustrie
  • Zellstoff-, Papierindustrie

Product Index

  • Absorption Filters
  • Air Filters
  • Automotive Filters
  • Filter Cartridges
  • Filter Elements
  • Filter Housings
  • Filter Media
  • Fuel Filters
  • Medical Filters
  • Membranes
  • Nonwovens
  • Oil Filters
  • Reverse Osmosis
  • Simulation
  • Synthetic Fibres
  • Technical Textiles
  • Ultrafiltration
  • Water Filters

Market Scope

  • Automotive Industry
  • Chemical Industries
  • Filtration and Separation Industry
  • Food, Beverage Industry
  • Paint, Pigments, Coatings Industry
  • Pharmaceutical Industry
  • Plastic Industry
  • Pulp, Paper Industry
  • Textile Industry
  • Waste Water Treatment

Product Index

  • 医用过滤器
  • 反渗透
  • 合成纤维
  • 吸附式过滤器
  • 工业用纺织品
  • 无纺布
  • 模拟
  • 水过滤器
  • 汽车过滤器
  • 滤壳
  • 滤油器
  • 滤筒
  • 滤芯
  • 燃油过滤器
  • 空气过滤器
  • 超过滤
  • 过滤介质
  • 隔膜

Market Scope

  •  汽车工业
  • 制药工业
  • 化学工业
  • 塑料工业
  • 废水处理
  • 油漆、颜料、涂料工业
  • 纸浆、造纸工业
  • 纺织工业
  • 过滤与分离工业
  • 食品、饮料工业

Product Index

  • أقمشة تقنية
  • اسطوانات
  • الألياف الاصطناعية وسائل الإعلام
  • الفلترة المضاعفة
  • النضح العكسي
  • تصفية العلب
  • خراطيش فلتر
  • غير المنسوجات / اللانسيج
  • فلاتر إمتصاص
  • فلاتر السيارات
  • فلاتر الهواء
  • فلاتر زيوت
  • فلاتر طبية
  • فلاتر ماء
  • قطع فلاتر
  • محاكاة
  • مواد فلاتر المحروقات
  • مواد فلترة

Market Scope

  • الصناعات الدوائية
  • الصناعات الغذائية وصناعة المشروبات
  • الصناعة الكيماوية
  • الصناعة النسيجية
  • الصناعة الورقية
  • صناعات الفلترة وفصل المواد
  • صناعة البلاستيك
  • صناعة الدهانات والصبغات والتلبيس
  • صناعة السيارات
  • معالجة مياه الصرف

Product Index

  • Cartouches de filtres
  • Eléments de filtre
  • Fibres Synthétiques
  • Filtres automobiles
  • Filtres médicaux
  • Filtres à absorption
  • Filtres à air
  • Filtres à carburant
  • Filtres à eau
  • Filtres à huile
  • Les boîtiers de filtre
  • Membranes
  • Médias de filtre
  • Non tissés
  • Osmose inversée
  • Simulation
  • Textiles techniques
  • Ultrafiltration

Market Scope

  • Industrie automobile
  • Industrie chimique
  • Industrie de filtration et de séparation
  • Industrie de la pâte de cellulose et du papier
  • Industrie de peintures, pigments et revêtements
  • Industrie des matières synthétiques
  • Industrie pharmaceutique
  • Industrie textile
  • Industries alimentaires et des boissons
  • Traitement des eaux usées

Product Index

  • Alloggiamenti filtro
  • Cartucce filtri
  • Elementi filtranti
  • Fibra sintetica
  • Filtri aria
  • Filtri carburante
  • Filtri di assorbimento
  • Filtri medicali
  • Filtri olio
  • Filtri per acqua
  • Filtri settore automobilistico
  • Membrane
  • Mezzi filtranti
  • Non tessuti
  • Osmosi inversa
  • Simulazione
  • Tessuti tecnici
  • Ultrafiltrazione

Market Scope

  • Settore alimenti e bevande
  • Settore automobilistico
  • Settore chimico
  • Settore filtrazione e separazione
  • Settore industria dell carta e della cellulosa
  • Settore industria tessile
  • Settore parafarmaceutico
  • Settore pitture, pigmenti e rivestimenti
  • Settore plastica
  • Trattamento acque reflue

Product Index

  • Elementy filtra
  • Filtry absorbcyjne
  • Filtry do wody pitnej
  • Filtry do zastosowań medycznych
  • Filtry oleju
  • Filtry paliwa
  • Filtry powietrza
  • Filtry samochodowe
  • Materiały nietkane
  • Media filtrów
  • Membrany
  • Obudowy filtrów
  • Odwrócona osmoza
  • Symulacja
  • Tekstylia techniczne
  • Ultrafiltracja
  • Wkłady filtra
  • Włókno syntetyczne

Market Scope

  • Filtrowanie i separacja
  • Oczyszczanie ścieków (waste water)
  • Produkcja farb i lakierów
  • Przemysł celulozowo-papierniczy
  • Przemysł chemiczny
  • Przemysł farmaceutyczny
  • Przemysł samochodowy
  • Przemysł spożywczy
  • Przemysł tekstylny
  • Przemysł tworzyw sztucznych

Product Index

  • Carcaças de Filtro
  • Cartuchos filtrantes
  • Elementos filtrantes
  • Fibres Synthétiques
  • Filtros de absorção
  • Filtros de ar
  • Filtros de combustível
  • Filtros de água
  • Filtros de óleo
  • Filtros medicinais
  • Filtros para automóveis
  • Meios de filtragem
  • Membranas
  • Não-tecidos
  • Osmose inversa
  • Simulação
  • Têxteis para usos técnicos
  • Ultrafiltração

Market Scope

  • Indústria alimentar, de bebidas
  • Indústria automóvel
  • Indústria de filtragem e separação
  • Indústria dos plásticos
  • Indústria farmacêutica
  • Indústria têxtil
  • Indústrias químicas
  • Pasta, indústria do papel
  • Pintura, pigmentos, indústria de revestimentos
  • Tratamento de água de despejo

Product Index

  • Абсорбционный фильтр
  • Автомеханические фильтры
  • Водяные фильтры
  • Воздушные фильтры
  • Имитация
  • Корпуса фильтров
  • Масляные фильтры
  • Медицинские фильтры
  • Мембраны
  • Нетканые материалы
  • Обратный осмос
  • Синтетические волокна
  • Технический текстиль
  • Топливные фильтры
  • Ультрафильтрация
  • Фильтрующие патроны
  • Фильтрующие элементы
  • Фильтрующий материал

Market Scope

  • Автомобильная промышленность
  • Бумажная промышленность
  • Лакокрасочная промышленность
  • Отрасль фильтрации и сепарирования
  • Очистка сточных вод
  • Производство пластмасс
  • Производство продуктов питания и напитков
  • Текстильная промышленность
  • Фармацевтическая промышленность
  • Химическая промышленность

Product Index

  • Cartuchos de filtro
  • Elementos de filtro
  • Fibra Sintética
  • Filtro de Viviendas
  • Filtros de absorción
  • Filtros de aceite
  • Filtros de agua
  • Filtros de aire
  • Filtros de automoción
  • Filtros de combustible
  • Filtros médicos
  • Medios de filtro
  • Membranas
  • Non-Wowens
  • Osmosis inversa
  • Simulación
  • Tejidos técnicos
  • Ultrafiltración

Market Scope

  • Industria de la alimentación y las bebidas
  • Industria de la automoción
  • Industria de la filtración y la separación
  • Industria de la pasta de madera, el papel
  • Industria de las pinturas, pigmentos, revestimientos
  • Industria de los plásticos
  • Industria farmacéutica
  • Industria textil
  • Industrias químicas
  • Tratamiento de aguas residuales

Product Index

  • Absorpsiyon Filtreleri
  • Dokunmamış Mamuller
  • Filtre Elemanları
  • Filtre Gövdeleri
  • Filtre Kartuşları
  • Filtre Ortamı
  • Hava Filtreleri
  • Membranlar
  • Otomobil Filtreleri
  • Sentetik Elyaf
  • Simülasyon
  • Su Filtreleri
  • Teknik Tekstiller
  • Ters Ozmos
  • Tıbbi Filtreler
  • Ultrafiltrasyon
  • Yakıt Filtreleri
  • Yağ Filtreleri

Market Scope

  • Atıksu Arıtma
  • Boya, Pigment, Kaplama Endüstrisi
  • Filtrasyon ve Ayırma Endüstrisi
  • Gıda, İçecek Endüstrisi
  • Kimya Endüstrisi
  • Otomotiv Endüstrisi
  • Plastik Endüstrisi
  • Selüloz, Kağıt Endüstrisi
  • Tekstil Endüstrisi
  • İlaç Endüstrisi

Product Index

  • 공기 필터
  • 기능성 섬유
  • 물 필터
  • 부직포
  • 분리막
  • 시뮬레이션
  • 여과재
  • 역삼투
  • 연료 필터
  • 오일 필터
  • 의료 필터
  • 자동차 필터
  • 필터 엘리먼트
  • 필터 카트리지
  • 필터 하우징
  • 한외 여과
  • 합성섬유
  • 흡수 필터

Market Scope

  • 섬유 산업
  • 식음료 산업
  • 여과 및 분리 산업
  • 자동차 산업
  • 제약 산업
  • 제지, 종이 산업
  • 페인트, 안료, 도장 산업
  • 폐수 처리
  • 플라스틱 산업
  • 화학 산업

Product Index

  • エアフィルター
  • オイルフィルター
  • シミュレーション
  • テクニカル繊維
  • フィルターエレメント
  • フィルターカートリッジ
  • フィルターハウジング
  • フィルターメディア
  • 不織布
  • 医療用フィルター
  • 合成繊維
  • 吸収フィルター
  • 水フィルター
  • 燃料フィルター
  • 自動車用フィルター
  • 逆浸透
  • 限外濾過

Market Scope

  • パルプ、製紙業界
  • プラスチック業界
  • 化学工業
  • 医薬品業界
  • 塗料、顔料、コーティング産業
  • 汚水処理
  • 濾過および分離技術工業
  • 繊維業界
  • 自動車産業
  • 食品、飲料業界

What's new

Softwaretools und Dienstleistungen für die Filtration

Das Fraunhofer ITWM besitzt langjährige Erfahrung in der Modellierung und Simulation von Filtrations- und Separationsprozessen. Das Anwendungsspektrum der Simulationstools und -dienstleistungen umfasst die Optimierung von Filtermedien und -elementen (u.a. Effizienz, Standzeit), von Feldflussfraktionierungsprozessen sowie die rechnergestützte Untersuchung von reaktiven Strömungen in porösen Medien. In Verbindung mit Simulationen der Herstellung von Filtermedien (z.B. Meltblown-Prozess) kann die gesamte Prozesskette von der Faser bis zum Filter rechnergestützt optimiert werden. Hierdurch lässt sich die Anzahl der zeit- und kostenaufwändigen Tests an Prototypen reduzieren und gleichzeitig können Produktivität und Qualität erhöht werden.

Software Tools and Services for Filtration

Fraunhofer ITWM has years of experience in the modelling and simulation of filtration, separation and purification processes. The software solutions and simulation services include the optimization of filter media and elements (efficiency, lifetime), field flow fractionation in microfluidics and the prediction of reactive flow in porous media. Combined with modeling and simulation of the media manufacturing (e.g. meltblown process), a computer-aided optimization for the entire chain from fiber to filter is available. The number of time-consuming and costly tests with prototypes can be significantly reduced while both productivity and quality can be increased.

Conference Presentation/s

Fast computation of the mechanical properties of filter fabrics and application to flow-induced deformation

M. Krier*, R. Kirsch, C. Mercier, J. Orlik, S. Rief, Fraunhofer Institute for Industrial Mathematics (ITWM), Germany

Conference Session: F07 - Modelling and Testing of Filter Media Properties - 2024-11-13, 16:45 - 18:00

In many areas of filtration application, woven filters are the preferred media type due to defined filtration properties, durability and mechanical strength. The latter feature is particularly important to counter the deformation caused by the fluid flow through the porous medium during operation.

When searching for the optimal combination of yarn material(s) and weave design (yarn strength, weave pattern) for a given application, an experimental approach using prototypes can become time-consuming and costly. In addition, empirical knowledge is of limited use when new yarn materials or material combinations are to be considered. Suitable simulation techniques can help to significantly accelerate this stage of product development and optimization.

To this end, a specialized software tool is used for both the design of the woven filter fabric and the prediction of its mechanical strength. Known quantities such as the weaving pattern, yarn diameter(s) and the yarn materials – especially their mechanical properties – serve as input data for the computation. Instead of performing 3D simulations for finding properties like tensile strength and flexural rigidity of the fabric, the simulation is sped up tremendously by using highly efficient beam models.

The simulation results are validated by comparing them to experimental data obtained by mechanical testing.

The results are applied to the coupled simulation of the deformation of the filter fabric under stationary flow on the macroscopic scale. On this length scale, a direct numerical simulation that resolves the open areas and the yarn in the grid and uses a fluid-structure interaction applied to the solid yarn would require a lot of computational resources and time. Instead, a multiscale approach as in [1] is taken: By performing CFD simulations on the microscopic length scale (i.e. the scale of the mesh holes and yarns), the flow resistance of the fabric is obtained for different strain rates. This is used for the simulation on the macroscopic scale, where the filter fabric is modelled as a (poro-)elastic shell with the effective flow resistance and mechanical properties obtained from the mesh-scale simulations. Based on the operating conditions (volumetric flow rate) a CFD simulation computes an initial pressure distribution, which represents the mechanical load on the filter fabric. This data is used for simulation of the deformation of the fabric. For the new state, another CFD simulation updates the pressure distribution. This cycle is repeated until a steady state in terms of deformation is reached.

The present paper presents the approach and the results in detail, particularly the improvements compared to previous methods...

Next generation FFP 2 Part I: Optimization of melt-blown and hydrocharging processes

W. Arne*, S. Antonov, D. Hietel, Fraunhofer Institute for Industrial Mathematics (ITWM); A. Rösner, Reifenhäuser Reicofil GmbH, Germany

Conference Session: G06 - Face Masks - 2024-11-13, 09:00 - 10:15

The biggest challenge when developing filtering face pieces (FFP) is to guarantee the required level of protection while keeping breathing resistance as low as possible. For instance, the FFP2 classification according to the DIN EN 149 standard requires that at an air flow rate of 95 l/min, particle penetration must not exceed 6% and breathing resistance must not exceed 2.4 mbar [1].

The aim of the research project SULA (“Sicherer und leichter atmen”, engl.: ‘safer and easier breathing’) is to significantly reduce both penetration and breathing resistance by improving the manufacture and processing of the nonwoven fabric. Expertise from industry (Reifenhäuser Reicofil, IMSTec) and application-oriented research (Fraunhofer ITWM) is being pooled to investigate the interaction of the individual processes and their effects on the product.

For a meltblown nonwoven to meet the specifications, the fibers are electrostatically charged. In this project, the focus is on the hydrocharging technology, which is applied already during fiber production and thus promises an even distribution of the electric charge in the nonwoven.

In Part 1 of the contribution, we aim to analyze the impact of various process parameters on the charging characteristics of nonwovens, particularly focusing on the differences between electrostatic charging and hydrocharging, as this is the main driver to reduce the pressure drop resulting in lower breathing resistance for the face mask.

To increase the productivity of the filter layer the Multi-Row process is in favor to the well-established Single-Row process. Nonwovens produced by these methods exhibit distinct permeabilities and charges, affecting the quality of FFP2 masks.

Our goal is to enhance our understanding of the positive effect of hydrocharging in comparison with electrostatic charging through simulation and to adapt the superior performance of the hydrocharged single row process to the multi row process with increased productivity.

The entire meltblown process, including hydrocharging, is complex. Therefore, we are starting with modeling and validating individual aspects of the process. Initially, the water nozzle was modeled in a static airflow, simulated, and its performance validated against the nozzle manufacturer's measurements. The simulation results closely matched the actual measurements, both in terms of droplet diameter distributions and velocities. Subsequently, we modeled the high-turbulence airflow without considering hydrocharging effects and validated this model using measurements of Reifenhäuser Reicofil. Later, we incorporated the interaction between water droplets and the airflow into the model and conducted further validations. We measured water quantities at various positions of the water nozzles behind the air jet and compared these with our simulation results.

In the next steps we want to include all the effects of Meltblown process to get insight into hydrocharging process. With this knowledge we want to optimize ...

Next generation FFP 2 part II: Material characterization, design and assessment of performance

R. Kirsch*, C. Mercier, K. Schladitz, M. Godehardt, Fraunhofer Institute for Industrial Mathematics (ITWM); E. Dahrmann, M. Tagliani, IMSTec GmbH, Germany

Conference Session: G06 - Face Masks - 2024-11-13, 09:00 - 10:15

The biggest challenge when developing filtering face pieces (FFP) is to guarantee the required level of protection while keeping breathing resistance as low as possible. For instance, the FFP2 classification according to the DIN EN 149 standard requires that at an air flow rate of 95 l/min, particle penetration must not exceed 6% and breathing resistance must not exceed 2.4 mbar [1].

The aim of the research project SULA (“Sicherer und leichter atmen”, engl.: ‘safer and easier breathing’) is to significantly reduce both penetration and breathing resistance by improving the manufacture and processing of the nonwoven fabric. Expertise from industry (Reifenhäuser Reicofil, IMSTec) and application-oriented research (Fraunhofer ITWM) is being pooled to investigate the interaction of the individual processes and their effects on the product.

For a meltblown nonwoven to meet the specifications, the fibers are electrostatically charged. In this project, the focus is on the hydrocharging technology, which is applied already during fiber production and thus promises an even distribution of the electric charge in the nonwoven. The corresponding experimental investigations and the associated modeling and simulations are presented in Part 1 of the contribution [2].

This second part is dedicated to the characterization of the electret media produced and the model-based prediction of their protective effect and breathing resistance. The characterization includes basic properties such as thickness and surface weight. In addition, a workflow is being developed for the automatic detection of the nonwoven’s fiber diameter distribution, based on suitable sets of SEM images. In terms of performance, air permeability measurements as well as standard tests for the filter efficiency are performed for both flat sheet samples and mask prototypes. These experimental investigations are carried out for different aerosols (paraffin oil, sodium chloride) and volumetric air flow rates. The influence of the charging is studied by comparing the filtration efficiency for discharged samples of the filter materials with the charged counterparts. To quantify the effectiveness of the charging process, electrostatic fieldmeter measurements are performed on both sides of the flat sheet samples.

These data form the basis for the identification and calibration of models for the prediction of air flow resistance and fractional efficiency of the materials. The modeling allows for

Influence of material compression on the filter performance of electrostatic charged filter media

C. Mercier*, R. Kirsch, S. Osterroth, Fraunhofer Institute for Industrial Mathematics (ITWM); S. Antonyuk, University of Kaiserslautern-Landau (RPTU), Germany

Conference Session: G14 - Modelling and Simulation II - 2024-11-14, 13:00 - 14:15

It is well known that filter media are exposed to compression during the manufacturing process. The transportation via conveyor belt rolls compacts the medium over the entire surface, changing the filter performance, i.e. efficiency, pressure drop and dust holding capacity. Further processing steps such as pleating compress the filter media locally at the tops and bottoms. The nonuniform permeability leads to a reorientation of the flow field so that the filter surface is not utilized optimally. Experimental measurement series are very helpful for the design and optimization of the manufacturing process and the nonwoven fabric. Nonetheless, they are associated with large efforts in time and cost.

This work provides an overview of the influence of compression on the filter performance of flat filter media. The pressure drop across the media as well as the fractional efficiency are predicted by models. The approach is based solely on measured material characteristics of the uncompressed nonwoven and requires no additional experimental effort for the compressed material (see Figure 1).

The data basis for the analysis of pressure drop is provided by five nonwovens, which differ by their fields of application and media structure to ensure a broad validity of the presented model. SEM images as well as measurements of the thickness, the area weight and the correlation between pressure and velocity characterize the uncompressed media. The prediction of the pressure drop for multiple compression levels is based on the Darcy-Forchheimer law [1] whereby relevant model parameters (permeability, inertial loss coefficient) are scaled with suitable models [2] referring to the change of material thickness and the corresponding reduction of porosity.

Based on one of the five filter media, which is an electret filter, the experiments are extended to include the fractional efficiency. Single fiber efficiency (SFE) models [3] are a reasonable choice for modeling porous media that consist of fibers. The mechanisms of diffusion, direct interception, inertial impaction, electrophoresis and dielectrophoresis are distinguished. Numerous models are available in the literature (see e.g. [4]), although the accuracy of the models can vary depending on the filter medium or moreover the manufacturing process. A suitable combination of these models paired with weighting factors describes the initial efficiency and can be extended by considering only the changes of material thickness and porosity.

The proposed methods allow for ...

Multiscale simulation of polymer melt flow through wire mesh filters

P. Toktaliev*, R. Kirsch, M. Krier, D. Niedziela, D. Neusius, Fraunhofer Institute for Industrial Mathematics (ITWM), Germany

Conference Session: L03 - Numerical Simulation of Solid-Liquid-Separation Processes - 2024-11-12, 16:45 - 18:00

Stainless steel wire meshes are known for their mechanical strength, corrosion resilience and thermal stability. These properties make them ideal for cleaning highly viscous fluids such as polymer melts. The latter are non-Newtonian and therefore, when simulating the flow through a wire mesh filter, the shear-thinning behavior must be considered properly to obtain accurate results for the pressure drop and filter efficiency.

As an example, the present talk studies the flow of polypropylene (PP) melt through wire meshes under the conditions during the production of meltblown filter media. A two-step multiscale approach is used to describe the non-Newtonian flow phenomenon in polymer melt flows both at the micro- and macroscopic scales. To reconstruct the microgeometry of the filter element, a parametric solid representation of the individual wires and their contact regions [1] is used.

On the macroscopic scale of the filter element, a direct numerical simulation of the filter weave, i.e. resolving all the pore spaces in the computational grid, would be very costly in terms of computational effort. Instead, a representative elementary volume (REV) of the weave is chosen and represented in a computational grid with sufficiently fine resolution. Based on the non-Newtonian viscosity law w.r.t. temperature and shear rate and experimental data, CFD simulations [2] are carried out for different temperatures and flow rates.

The results are used to obtain the effective flow resistance of the wire mesh which allows for an upscaling of the simulation to the macroscale. In addition, the velocity field of a Newtonian fluid which causes the same pressure drop for the given flow rate is compared with the local velocities of the melt. The difference is relevant for micro-scale simulations of the transport and deposition of solid particles.

The talk also presents several examples for the multiscale simulation of PP melt flow in wire mesh filters and discusses the results...

Information Request